Role of hydrogen in the activation and regulation of hydrogen oxidation by the soluble hydrogenase from Alcaligenes eutrophus H16.

نویسندگان

  • M R Hyman
  • C A Fox
  • D J Arp
چکیده

The activation kinetics of the H2-oxidizing activity of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. Activation with Na2S2O4 plus 101 kPa H2 resulted in a rapid increase in activity over 1 h and constant activity after 3 h incubation. Less-stable activations were achieved if enzyme was incubated with Na2S2O4 under 1 kPa H2 or 101 kPa N2. The enzyme could also be partly activated either with NADH alone or with H2 alone. The level of activity obtained with both 101 kPa H2 and NADH present was greater than that obtained with either 101 kPa H2 or NADH alone. Activation with H2 plus NADH was virtually independent of NADH concentration but highly dependent on H2 concentration. The effects of various concentrations of H2 and constant concentration of NADH on the level of activation were the same whether H2 oxidation was assayed by H2-dependent Methylene Blue or NAD+ reduction. Diaphorase activity did not require activation and was little affected by the treatments that activated H2-oxidizing activity. The results suggest that H2 plays an important role in regulating the level of H2-oxidizing activity in this soluble hydrogenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus.

Mutants defective in chemolithoautotrophic growth (Aut-) have been isolated from Alcaligenes eutrophus strains H16, N9A, G27, and TF93. Spontaneous Aut- mutants were obtained only with strain TF93. Mutants of the other strains were selected after conventional mutagenesis or treatment with mitomycin. Most of the mutants, including the spontaneous Aut- strains, lacked hydrogenase activity (Hox-) ...

متن کامل

The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation.

Nucleotide sequence analysis revealed a 1,791-bp open reading frame in the hox gene cluster of the gram-negative chemolithotroph Alcaligenes eutrophus H16. In order to investigate the biological role of this open reading frame, we generated an in-frame deletion allele via a gene replacement strategy. The resulting mutant grew significantly more slowly than the wild type under lithoautotrophic c...

متن کامل

Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria.

A survey on organisms able to use molecular hydrogen as electron donor in the energy-yielding process is presented. In the group of the aerobic hydrogen-oxidizing bacteria so far two types of hydrogenases have been encountered, a NAD-reducing, soluble enzyme (H2 : NAD oxidoreductase) and a membrane-bound enzyme unable to reduce pyridine nucleotides. With respect to the distribution of both type...

متن کامل

Isolation of a hydrogenase-cytochrome b complex from cytoplasmic membranes of Xanthobacter autotrophicus GZ 29

The aerobic nitrogen-fixing hydrogen bacterium Xanthobacter autotrophicus strain GZ29 [1] can grow autotrophically with hydrogen, oxygen, carbon dioxide, and molecular nitrogen as sole sources of electrons, energy, carbon, and nitrogen. Carbon dioxide is fixed via the Calvin cycle, and for activation of hydrogen only a membrane-bound hydrogenase activity was detected which does not reduce NAD [...

متن کامل

Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of Alcaligenes eutrophus.

The cytoplasmic, NAD-reducing hydrogenase (SH) of Alcaligenes eutrophus H16 is a heterotetrameric enzyme which contains several cofactors and undergoes a complex maturation during biogenesis. HoxH is the Ni-carrying subunit, and together with HoxY it forms the hydrogenase dimer. HoxF and HoxU represent the flavin-containing diaphorase moiety, which is closely related to NADH:ubiquinone oxidored...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 254 2  شماره 

صفحات  -

تاریخ انتشار 1988